人工智能技術可應用于安防、醫療、家居、交通、智慧城市等各行各業,其前景是毋庸置疑的,未來絕對是一個萬億級市場。(推薦學習:Python視頻教程)
根據應用領域的不同,人工智能研究的技術也不盡相同,目前以機器學習、計算機視覺等成為熱門的AI技術方向,一起探索人工智能的發展與未來。
機器學習是人工智能的核心
機器學習也被稱為人工智能的核心,它主要是研究計算機怎樣模擬或實現人類的學習行為以獲取新的知識或技能,幫助計算機重新組織已有知識結構使之不斷改善自身的性能。
機器學習是人工智能研究的一個分支,人們對機器學習的研究也有很多年了。它的發展過程大體上可分為幾個時期,第一是在20世紀50年代中葉到60年代中葉,屬于熱烈時期;第二是在20世紀60年代中葉至70年代中葉,被稱為機器學習的冷靜時期;第三是從20世紀70年代中葉至80年代中葉,稱為復興時期;第四階段的機器學習開始于1986年,目前我們仍處在這個時期。
現在很多應用領域都可以看到機器學習的身影,如數據挖掘、自然語言處理、生物特征識別、搜索引擎、醫學診斷、證券、游戲、機器人等。
學習是一項非常復雜的過程,學習與推理分不開,按照學習中使用推理的多少,機器學習所采用的策略可分為四種:機械學習、傳授學習、類比學習和通過事例學習。學習中所用的推理越多,說明系統的能力越強。
機器學習的難度在哪?
對于機器學習的開發者而言,除了需要對數學知識掌握得非常熟練之外,選擇什么工具也很重要。一方面,機器學習的研究需要創新、實驗和堅持,很多人半途而廢;另一方面,如何將機器學習模型應用到實際工作中也有難度。
除了工程師因素,機器學習的系統設計也有難度。影響學習系統設計的最重要的因素是環境向系統提供的信息,信息質量直接影響系統性能,知識庫里存放的是指導執行部分動作的一般原則,但環境向學習系統提供的信息卻是各種各樣的。
如果信息質量高,與一般原則的差別比較小,則機器學習比較容易處理。如果向學習系統提供的是無規律的指令信息,則學習系統需要在獲得足夠數據之后,刪除不必要的細節,總結后才能形成指導動作,并放入知識庫;這樣機器學習的任務就比較繁重,設計起來也較為困難。
對于機器學習而言,還有一個技術難度就是機器學習的調試很復雜,如在進行常規軟件設計時,編寫的問題不能按預期工作,可能是算法和實現出現問題;但在機器學習里面,實際的模型和數據是兩個關鍵因素,這兩個的隨機性非常強,調試難度倍增。除了復雜性,機器學習的調試周期一般都很長,因為機器得到指令進行實施修正和改變通常需要十幾個小時甚至幾天。
更多Python相關技術文章,請訪問Python教程欄目進行學習!
聲明:本網頁內容旨在傳播知識,若有侵權等問題請及時與本網聯系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com